

Advanced Research on Information

Systems Security

ISSN: 2795-4609 | ISSN: 2795-4560
Print & Online

 72

Assessing Domain Specific LLMs for CWEs Detections

Mohamed El Atoubia*, Xiao Tanb

a,bGeorgia Institute of Technology, Atlanta, GA 30332, USA

aEmail: matoubi3@gatech.edu

bEmail: xtan70@gatech.edu

Abstract

In recent years, Large Language Models (LLMs) have witnessed a significant evolution branching to several fields of

life. From science & engineering to arts & literature, the realm of applications has become limitless. Their ability to

assimilate and comprehend contextual writings is astonishing. This ability also extends to human-machine software

written code. Hence, many novel attempts have demonstrated cutting-edge experiments with LLMs for software

testing and security. These contributions have set the initial seed for promising future research endeavors to use LLMs

to detect weaknesses, vulnerabilities, and malicious pieces of software code in even the largest repositories. However,

further explorations remain short, especially with domain-specific LLMs. LLMs specifically trained for software

security remain undiscovered and their behavior is still undisclosed in the literature. This paper aims to explore this

new area of LLMs for software security through testing and comparing the accuracy of these AI models against general

domain trained models and discover their abilities to recognize the exact vulnerability while performing and

observational study of their behaviors while responding to the precisely crafted prompts. In our experiments, we

considered GPT-3.5 from OpenAI and Gemini Pro from Google. We find that, in terms of recall, Gemini Pro

outperformed GPT-3.5 by a large margin with recall of 63.13%, while GPT-3.5 has Recall of 43.56%, showing that

Gemini Pro is better at identifying the true CWE vulnerability with less type II error. Meanwhile, Gemini Pro is also

better at discovering the correct CWE vulnerability No. among all correct identified vulnerable cases, with the

accuracy of 13.13% vs the GPT-3.5’s 10.61%. However, GPT-3.5 is superior to Gemini Pro in terms of Precision and

Accuracy. The Precision of GPT-3.5 is 88.89%, while Gemini Pro has a precision of 54.35%, showing that Gemini

Pro inclines to identify case having vulnerability. The Accuracy for both models is similar; GPT-3.5 has Accuracy of

68.75%, and Gemini Pro has Accuracy of 55.50%.

Keywords: LLM; CWE; Software Security; Vulnerabilities; Cybersecurity; AI

mailto:matoubi3@gatech.edu
mailto:xtan70@gatech.edu

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 73

Citation: M. Elatoubi and X. Tan, “Assessing Domain Specific LLMs for CWEs Detections”, ARIS2-Journal, vol. 5,

no. 1, pp. 72–85, May 2025.

DOI: https://doi.org/10.56394/aris2.v5i1.53

--

*Corresponding author. Email address: matoubi3@gatech.edu

1. Introduction

Software vulnerabilities remain a persistent challenge in modern software systems, leading to critical issues such

as system failures and buffer overflows. To address this challenge, numerous automated tools have been

developed, including VUDDY [1], which focuses on discovering vulnerabilities in cloned code, and VulPecker

[2], which employs code similarity algorithms to detect specific vulnerabilities.

The advent of Large Language Models (LLMs) has revolutionized various domains, including software

engineering. Their remarkable capabilities across a wide range of tasks have prompted researchers to explore their

potential in addressing complex software security challenges. In light of this, our research aims to investigate the

effectiveness of two prominent LLM models—GPT-3.5 from OpenAI and Gemini Pro from Google—in detecting

software vulnerabilities.

Our study focuses on two primary research questions:

RQ1: Can LLMs effectively flag code containing vulnerabilities?

This question aims to assess the ability of GPT-3.5 and Gemini Pro to identify potentially vulnerable code

segments. We will evaluate their performance in distinguishing between secure and vulnerable code across various

programming languages and vulnerability types.

RQ2: How accurately can LLMs identify true Common Weakness Enumeration (CWE) categories?

This question delves deeper into the LLMs' capability to not only detect vulnerabilities but also correctly classify

them according to the standardized CWE framework. We will assess the models' precision in assigning

appropriate CWE categories to identified vulnerabilities.

To address these research questions, we will employ a comprehensive methodology that leverages recent

advancements in LLM-based vulnerability detection techniques. Our approach will include:

1. Dataset Preparation: A carefully curated collection of code samples from the DiverseVul dataset,

encompassing both vulnerable and non-vulnerable instances across various programming languages and

vulnerability types.

2. Prompt Engineering: Advanced prompting strategies optimized for vulnerability detection, including chain-

of-thought reasoning.

3. Performance Evaluation: Rigorous assessment using standard metrics such as precision, recall, accuracy,

and F1-score.

4. Behavioral Analysis: Observational study to analyze the unique behaviors exhibited by each model when

responding to crafted prompts.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 74

This research contributes to the growing body of knowledge on AI-driven software security by providing

empirical evidence of LLMs' capabilities in vulnerability detection and offering insights into their practical

application in software security workflows.

2. Background & Related Work

In the quest to leverage LLMs’ high potential for contextual understanding and especially for software code, many

research studies have explored the applications of generative AI in cybersecurity and more specifically for

software quality assurance and security. The response speed and software static analysis techniques implemented

by these models have encouraged researchers to publish their results and set a new horizon for promising future

results. One of the first published studies was completed by the DiverseVul team from Yizheng et al. [3], they

built a dataset from repositories containing vulnerable and non-vulnerable code. They formatted the code snippets

in correct JSON format for automated data processing operations. They tested the dataset on trending LLMs at

the time of study such as GPT-2 and RoBERTa which is an extension of BERT language model. The results were

above 90% in accuracy but with low precision across all model architectures. Nevertheless, these results were

encouraging. Rasmus et al. [4] in a recent study explored a new methodology where they tested on different

datasets and with four research questions and different prompt designs like the “zero-shot” and the “chain of

thought”. They used up-to-date LLMs like GPT-3.5, Falcon-7b-instruct, Dolly-v2-12b, Text-davinci-003, and

Llama-2-13b-chat-hf. The results varied in terms of accuracy ranging from 9.7% to 87%. The study didn’t include

statistics about precision but calculated the F1 measure. Although these experiments shed light on the matter and

confessed the limitations of general LLMs applications in cybersecurity in general and software security in

particular, they didn’t experiment on domain-specific trained LLMs, especially LLMs trained for cybersecurity

with threat intelligence capabilities. Our study aims to add to the current literature by exploring domain-specific

LLMs trained specifically for cybersecurity and threat intelligence. The only publicly available LLM at the time

of conducting this study is Google’s Gemini Pro 1.5 which handles general tasks but has a part specifically trained

for security analysis which is the model PaLM-Sec-2 and this model was supposed to be made available in a

standalone version in the year of 2023 but was removed and introduced as part of the new Gemini Pro 1.5 in 2024.

3. Methodology

3.1. Experimentation process

In this section, we elaborate on our proposed method for leveraging LLMs contextual understanding, static

analysis abilities, and threat intelligence knowledge to maximize the accuracy and precision of vulnerability

detection in software code. We commence by outlining the following experimentation process designed to

accommodate both Generic and Domain-specific LLMs intricacies without any compromises. Our process

addresses a couple of shortcomings found in previous research which is behavior analysis of LLMs over large

datasets and the absence of empirical results on security trained LLM. An overview of the proposed method is

illustrated in Figure 1.

We now explain the experimentation steps in detail:

1. We begin by exploring the dataset containing code functions using IDE software.

2. We extract a random sample of code functions that are statistically conforming, more details can be found in

the dataset section.

3. As the process is manual, we design a spreadsheet to note results and calculate performance metrics.

4. We design the prompt template and combine it with the code snippet.

5. We insert the combined final prompt in the LLM input console and wait for the results.

6. We note down results about vulnerability detection and CWE precision if the code is vulnerable.

7. In case of out-of-context responses for both vulnerability detection and CWE precision, we use the Feedback

control technique mentioned in section 3.3 until we get in-context results.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 75

Figure 1: Method illustration.

3.2. Prompt design

Prompting is the art of knowing how to formulate request queries in order to receive the right output as expected.

In recent years after the widespread use of LLMs and studying the responses that sometimes can be wrong, not

aligned with context, or sometimes even completely irrelevant. Prompt design and engineering became of ultimate

importance and can be seen as the grand steering wheel for directing LLMs artificial reasoning. Many studies

have erupted in the field of prompt engineering. The results of these studies introduced different strategies and

techniques to approach different problems by reformulating the prompts and empowering certain parts of LLMs

artificial processing to maximize the alignment with expected and desired outputs. We will not discuss each

prompting strategy and technique in this paper as it is outside of the scope of our study. For our experiment, we

opted for the Chain-of-Thought Prompting. This technique enables and empowers the analytical side of LLMs.

As the name suggests, the Chain-of-Thought operates by breaking a large problem into smaller parts called

thoughts, these thoughts are linked to each other, thus forming a chain. This can be thought of the same way as

human logic approaches complex problems. Jason et al. [5] have concluded in their research that the technique of

Chain-of-Thought yields better results in LLMs that have sufficiently a large number of parameters. The template

for the prompt is shown in Figure 2. Usually, LLMs have a limited number of tokens that can be used in terms of

the size of the prompt. In our case this was not an issue as the prompt template was optimized and the code

functions were not as large to be of concern. In addition, our main target LLM of study had approximately an

unlimited number of tokens. We now explain in detail the steps taken in designing the prompt for software security

analysis. We divided the task of the software security analyst into six subtasks as the following:

1. The first subtask is to put the LLM in the role of the software security analyst by alerting the presence of

vulnerabilities in the provided code functions and stipulating the order to detect any vulnerabilities according

to CWE list.

2. The second subtask is to limit the list of potential encountered CWEs after studying the sampled data. In real

application scenarios this could be a guess about the top encountered CWEs.

3. To ensure fairness and avoid bias, we added the third subtask to inform the LLM that it might encounter

CWE vulnerabilities not mentioned in subtask 2 and should analyze normally.

4. The fourth subtask is limiting the LLM output to choose between two answers whether the provided code is

vulnerable or non-vulnerable.

5. The fifth subtask is a conditional one, meaning if the code provided is found to be vulnerable, then, the LLM

must provide the CWE number only if it is confident about the type of the CWE.

6. The final subtask is to properly format the code removing space and new line annotations like “\t” and “\n”.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 76

Figure 2: Prompt used.

3.3. Feedback control

On a few occasions, LLMs’ way of responding can change drastically even with a well-designed prompt. This

issue is usually faced when using public LLMs due to their openness to learn from prompts input from public

users. In the field of AI, this phenomenon is called model drifting. To help correct LLM response behavior and

keep it well aligned with the stipulated requirements in the prompt. We thought of using a simple Feedback control

method. This would a novel technique to use for LLMs when thought of as closed-loop systems. The Feedback

control technique is to wait for the LLM output and check if it provides an output conforming and in-context to

the prompt’s requirements. If not then manually, input a small prompt stating to the LLM to stick to the prompt

and provide an answer. The revised experimentation process in Figure 3 shows how feedback control is

implemented. We now give an example of the model drift control prompt if the LLM output is far from what is

expected.

Model drift control prompt: “This is an out-of-context response, your answer must only be ‘vulnerable’ or ‘non-

vulnerable’ code”.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 77

Figure 3: Experimentation process with feedback control.

Talk about this technique that we implemented as a novel technique not used before and explain that it was only

implemented when the LLM goes out of context.

4. Dataset

4.1. Data Source

We will describe the dataset used for this study. We chose to experiment on the most recent and diversified dataset

containing vulnerabilities which is DiverseVul. DiverseVul is a collection of public repository code commits with

high-quality security issues that are clear and labeled under the Common Weakness Enumeration “CWE” which

is a standard category system for hardware and software weaknesses and vulnerabilities [6]. The choice also

comes from the fact that the dataset was well organized and labeled correctly in JSON format. The programming

language is basically C/C++, which is quite familiar to LLMs, and this was also a great motivation for us. The

other criteria were the diversity of the dataset as the code commits were collected from various open-source

projects covering several fields such as operating systems, networking protocols, machine learning, security, and

Web technology. The dataset contained exactly 7,514 commits from 797 projects, which resulted in 18,945

vulnerable code functions and 330,492 non-vulnerable ones, spanning over 150 CWEs as stated by the DiverseVul

team itself [3]. The dataset was made available for the public to use and experiment on by the DiverseVul team.

We downloaded the dataset in JSON format file from the Google Drive storage link provided. The file size is

around 720 MB, and we used an Intelligent Development Environment software “IDE” to open and explore the

dataset.

4.2. Sampling

The dataset itself was easy to explore and well formatted for automated operations such as sending the code

commits to the LLMs and receiving feedback via the provided API but due to the objectives of our study explained

earlier, we had to run the experiments manually. Due to these constraints, it was impossible for us to run the

experiment manually over the whole code commits, hence, the only solution was to sample at random and with

an acceptable statistical confidence level. With a confidence level of 95%, a margin of error of 5%, a population

proportion of 50% since each data sample can either be vulnerable or non-vulnerable in reality, and a population

size of 349,427 code commits, following the sampling equation we need a sample size of 384 samples or more.

We decided to fix the sample size at 400 samples to be in a relatively superior precision. We sampled 201 samples

for vulnerable and 199 non-vulnerable code functions, each making 400 samples in total.

Parameters Confidence level = 95% Margin of error = 5% Population proportion = 50%

Population size =

349,427

Calculated sample size =

384

Total samples taken = 400

Vulnerable samples =

201

Non vulnerable samples =

199

Table 1: Sampling results.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 78

4.3. Sampling Results

In this section, we give the results from our sampling. We first begin by listing the distribution of samples across

the vulnerable code functions and the found CWEs. The following table lists the results:

Figure 4: Distribution of CWEs across vulnerable code functions.

Listing the CWEs numbers only is not as informative as listing its description, hence, we list the following table

containing the CWEs listed in Figure 4 with a description title of the CWE.

CWE Number CWE Title

787 Out-of-bounds Write

125 Out-of-bounds Read

20 Improper Input Validation

190 Integer Overflow or Wraparound

476 NULL Pointer Dereference

200 Exposure of Sensitive Information to an Unauthorized Actor

416 Use After Free

119 Improper Restriction of Operations within the Bounds of a Memory Buffer

362 Concurrent Execution using Shared Resource with Improper

Synchronization ('Race Condition')

399 Resource Management Errors

703 Improper Check or Handling of Exceptional Conditions

264 Permissions, Privileges, and Access Controls

400 Uncontrolled Resource Consumption

120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

189 Numeric Errors

862 Missing Authorization

269 Improper Privilege Management

284 Improper Access Control

287 Improper Authentication

401 Missing Release of Memory after Effective Lifetime

Table 2: CWEs found in the sample data and their title.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 79

5. Evaluations

To assess the detection accuracy, we conducted an experiment using Google Gemini Pro and Open AI GPT-3.5.

We analyzed the responses from both agents for each case in the dataset using the same prompt.

5.1 Summary of Results

In analyzing the response to compare the accuracy, we defined a response as vulnerable if the response from

agents directly told us the case was vulnerable following the prompt requirements or, in rare cases, the agents

responded with a detailed explanation from which vulnerability could be inferred. Conversely, a response was

labeled as non-vulnerable if the response directly stated the case was vulnerable or non-vulnerability could be

inferred from the detailed response with an explanation.

In the same way, the CWE number was recorded if the response stated the case in the dataset was vulnerable and

the response contained a CWE number. In some cases, the response which stated the case was vulnerable did not

include any CWE number. We defined the case in the dataset had the exact CWE number if the response from

models stated the case was vulnerable and output a CWE number which was the same as the true CWE number

of this case.

Table 3 and Table 4 present the vulnerability detection results of Google Gemini Pro and Open AI GPT-3.5. Table

5 shows the result of the performance metrics comparison. Precision (
𝑇𝑃

𝑇𝑃+𝐹𝑃
) , Recall (

𝑇𝑃

𝑇𝑃+𝐹𝑁
) , Accuracy

(
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
) , and F-measure (2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) were used as performance metrics. Gemini Pro

demonstrated superior performance compared to GPT-3.5 in terms of true positives, correctly identifying 125

vulnerable cases compared to GPT-3.5's 88. However, Gemini Pro also produced a significantly higher number

of false positives (105) compared to GPT-3.5 (11) and a moderately smaller number of false negatives (73)

compared to GPT-3.5 (114), indicating Gemini Pro is much more conservative in diagnosing non-vulnerable cases.

Out of 198 cases with a CWE No. in the selected database, the GPT-3.5 correctly predicted 26 cases with exact

CWE No. with an accuracy of 13.13%, while the Gemini Pro correctly predicted 21 cases with an accuracy of

10.61%. Both models performed unsatisfactorily in identifying the CWE No.

Predicted

Vulnerable Non-Vulnerable

Actual

Vulnerable
TP FN

88 114

Non-Vulnerable
FP TN

11 187

Table 3: Confusion Matrix for GPT-3.5

Predicted

Vulnerable Non-Vulnerable

Actual

Vulnerable
TP FN

125 73

Non-Vulnerable
FP TN

105 97

Table 4: Confusion Matrix for Google Gemini Pro

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 80

 GPT-3.5 Google Gemini Pro

Precision 88.89% 54.35%

Recall 43.56 % 63.13%

Accuracy 68.75% 55.50%

F-measure 58.47% 58.41%

Table 5: Performance Metrics Comparison

5.2 Examples of Responses

In this section, we will discuss specific examples of GPT-3.5 and Gemini Pro’s responses when it correctly

detected the vulnerabilities and output the required response.

Figure 5 shows a code example with vulnerabilities (CWE-119).

Figure 5: Example Code with Vulnerabilities (CWE-119)

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 81

• Gemini Pro Response:

The Gemini Pro’s response aligns with expected format by outputting whether the vulnerability exists, if existing,

then output CWE No. The Gemini Pro correctly identified the code containing vulnerabilities but wrongly

identified CWE No. to be CWE-787.

It is worth noting that Gemini Pro sometimes outputs three draft outputs, indicating CWE No., when identifying

the code has vulnerability. Sometimes the three-draft output CWEs have different numbers, showing even though

Gemini Pro is not sure about the CWE No., it still provides three options for users to investigate it manually,

which contradicts GPT-3.5.

• GPT Response:

GPT responses were not always aligned with prompt instructions even if the code is vulnerable. The output would

only state that code snippet is vulnerable without supplying the type of weakness in the or CWE number. GPT

required further prompting to elaborate more on the type of software weakness. As for the determination process,

GPT did a recommendable job in judging whether the piece of software was vulnerable or not. In other cases,

GPT performed poorly even with simple CWE cases. The following figure represents a response example from

GPT.

Figure 6: Example of GPT response to a vulnerable code snippet.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 82

5.3 Performance Metrics Analysis

From Table 5, the performance metrics between the two models were quite different than initial expectations. The

precision metric measures how correctly the model can identify true positives from positive class [8]. The GPT

performance metrics results for precision and accuracy were far superior to Gemini Pro especially when it comes

to precision as GPT achieves 88.89% against 54.5% for Gemini Pro, but this superiority decreases for accuracy

metric where GPT scores 68.75% compared to 55.5% for Gemini Pro. This can be due to the seniority of GPT

model and open learning policy from public prompting by users worldwide. For the recall performance metric,

Gemini Pro was significantly better than GPT model at 63.13% against 43.56% respectively. The recall

performance metric measures the model’s ability to detect true positives from all positive samples [8]. This can

be explained by the fact that a segment of Gemini Pro is fully trained by Google on threat intelligence data.

6. Observations & Limitations

Due to the complex heuristic nature of neural networks, Large Language Models (LLMs) inherit certain features

as they evolve which makes their output answers a subject of uncertainty studies. Despite the fact that for the

most part of their operations LLMs do produce answers as predictions expect, they can still sometimes throw

unexpected output. During our work, we have witnessed some strange behaviors from LLMs under

experimentation and especially with GPT model. In this section, we list these observations with assumptive

explanations as emphasized previously knowing precisely what is happening inside of an LLM is not possible.

For GPT and Gemini Pro we observed the following behaviors and issues:

• Hallucinations: This problem comes from the inherent bias in LLMs where the model would provide

output answers that are far from the context provided in input. We witnessed GPT having this problem

of hallucinations during experimentation on several occasions. According to J. Song et.al [7], this comes

from the False Negatives problem, and this is true for this study as the number of labeled False Negatives

makes more than 25% of the whole dataset. Gemini Pro did not exhibit any hallucinations and was far

more stable.

• Not responding: This can be considered as a special case of “Hallucinations” behavior. The case here is

the LLM responding with a void output content without even trying to build a generic answer stating

why it cannot generate an answer. We witnessed GPT behave as such in a couple of cases.

• Responding with a question: In a few cases, the LLM would respond with a question to our first question

sometimes the output question seems like a rhetorical question. In other cases, it appears as if the LLM

couldn’t store the prompt correctly and it had memory issues, asking for the code snippet to be processed

although it was supplied in the first prompt with clear delimiters. This behavior was rare in GPT and

Gemini models.

• Temporal differences: In this case, the LLM changes answers and judgments between false and true with

time. The answer given at time t1 is quite different from the output answer at time t2 (where t1 ≠ t2). GPT

had this problem quite often while Gemini Pro did not.

• Fickleness: This behavior is when the LLM is affected by feedback from the user after receiving the first

output. The LLM would give a first answer to the LLM, that is true, the user would provide feedback

stating that the LLM was wrong. The LLM would then take that new false answer as true and would use

it as answer for similar future prompts. GPT is quite sensitive to this issue and can quickly change true

original answers to false one after user’s feedback. This can be explained by the fact that GPT version

used is able to learn from user’s feedback. We did not experience such behavior from Gemini Pro.

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 83

• Low confidence: The LLM would suggest a list of possible answers instead of deciding on one answer

whether it is true or false. GPT didn’t face this issue, For Gemini Pro, this was a rare event as well.

• Overexplaining: The LLM provides the correct answer but goes above and beyond by offering detailed

explanations to the CWE in code snippet provided. The LLM clearly breaks the instructions in the input

prompt.

As a result of the experiments and after thoroughly analyzing the performance and examining the behavior of

each model, we concluded that Cybersecurity Domain Specific LLMs are indeed capable of running threat

intelligence analysis in the software security area but still not surpassing the General LLMs capabilities. These

Domain Specific LLMs are more stable than General LLMs and can be of great utility in the near future. As of

now, the general performance results might seem similar to General LLMs but going deeper into the analysis and

by assessing behaviors from both models, we are convinced that these Domain Specific LLMs can significantly

surpass General LLMs when they reach their phase of maturity.

7. Conclusion

Our study on the application of Large Language Models (LLMs) for software vulnerability detection and

Common Weakness Enumeration (CWE) identification has yielded several significant insights. We focused on

two prominent models: GPT-3.5 from OpenAI and Gemini Pro from Google, evaluating their performance on the

DiverseVul dataset.

Key findings include:

1. Vulnerability Detection Capability: Both GPT-3.5 and Gemini Pro demonstrated the ability to detect software

vulnerabilities in the DiverseVul dataset, albeit with varying degrees of success. This confirms the potential of

LLMs in the field of software security analysis.

2. Performance Metrics:

• GPT-3.5 excelled in precision (88.89%) and overall accuracy (68.75%), indicating its strength in

correctly identifying vulnerabilities when it flags them.

• Gemini Pro showed superior recall (63.13% vs. 43.56% for GPT-3.5), suggesting it's more adept at

identifying a higher proportion of actual vulnerabilities.

3. CWE Identification: Both models struggled with accurate CWE number identification, with GPT-3.5

achieving 13.13% accuracy and Gemini Pro 10.61%. This highlights a significant area for improvement in future

iterations.

4. Model Behaviors: We observed several interesting behaviors, including:

• Hallucinations and non-responses, particularly in GPT-3.5

• Temporal differences in GPT-3.5's responses

• Gemini Pro's tendency to be more conservative in vulnerability detection

These findings underscore both the potential and current limitations of using LLMs for software vulnerability

detection. The models' ability to identify vulnerabilities without specific training in this domain is encouraging,

but their performance is not yet at a level suitable for standalone use in critical security applications.

In conclusion, while GPT-3.5 and Gemini Pro show promise in software vulnerability detection, significant

improvements are needed, particularly in CWE identification accuracy. As LLMs continue to evolve, their

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 84

integration into software security workflows presents an exciting frontier for enhancing code quality and security

practices. However, current limitations necessitate careful consideration and likely hybrid approaches when

applying these models to critical security tasks.

References

[1] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach for vulnerable code clone discovery,” in

2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 595–614.

[2] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: An automated vulnerability detection system based

on code similarity analysis,” in Proceedings of the 32nd Annual Conference on Computer Security

Applications, ser. ACSAC ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 201–

213. [Online]. Available: https://doi.org/10.1145/2991079.2991102

[3] Y. Chen, Z. Ding, L. Alowain, X. Chen, and D. Wagner, “DiverseVul: A New Vulnerable Source Code

Dataset for Deep Learning Based Vulnerability Detection”, Symposium on Research in Attacks, Intrusions

and Defenses (RAID ’23), October 16–18, 2023, Hong Kong, China. ACM, New York, NY, USA, 15

pages. Available: https://doi.org/10.1145/3607199.3607242

[4] R. Jensen, V. Tawosi, S. Alamir, “Software Vulnerability and Functionality Assessment using LLMs”, JP

Morgan AI Research, London, UK, March 13th, 2024, arXiv:2403.08429.

[5] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. V. Le, D. Zhou, “Chain-of-

Thought Prompting Elicits Reasoning in Large Language Models”, Google Research, Brain Team, January

10th, 2023, arXiv:2201.11903.

[6] Common Weakness Enumeration List, MITRE, December 20th, 2024, Available:

https://cwe.mitre.org/about/index.html.

[7] J. Song, S. Yu, S. Yoon, “Large Language Models are Skeptics: False Negative Problem of Input-

conflicting Hallucination”, Data Science & AI Laboratory, Seoul National University, Korea, June 20th,

2024, arXiv:2406.13929.

[8] Accuracy vs. precision vs. recall in machine learning: what's the difference?, Classification metrics guide,

Evidently AI, Last updated: October 1, 2024.

[9] Mateus-Coelho, Nuno, and Manuela Cruz-Cunha, editors. Exploring Cyber Criminals and Data Privacy

Measures. IGI Global, 2023. https://doi.org/10.4018/978-1-6684-8422-7

[10] R. F. Abu Hweidi, M. Jazzar, A. Eleyan and T. Bejaoui, "Forensics Investigation on Social Media Apps and

Web Apps Messaging in Android Smartphone," 2023 International Conference on Smart Applications,

Communications and Networking (SmartNets), Istanbul, Turkiye, 2023, pp. 1-7, [Online]. Available:

10.1109/SmartNets58706.2023.10216267.

[11] MobilEdit. “MobilEdit.” Internet: https://www.mobiledit.com, 2023 [Dec. 10, 2023].

[12] Mateus-Coelho, Nuno Ricardo, et al. "POSMASWEB: Paranoid Operating System Methodology for

Anonymous and Secure Web Browsing." Handbook of Research on Cyber Crime and Information

Privacy, edited by Maria Manuela Cruz-Cunha and Nuno Mateus-Coelho, IGI Global, 2021, pp. 466-497.

https://doi.org/10.4018/978-1-7998-5728-0.ch023

https://doi.org/10.1145/2991079.2991102
https://doi.org/10.1145/3607199.3607242
https://cwe.mitre.org/about/index.html
https://doi.org/10.4018/978-1-6684-8422-7
http://doi.org/10.1109/SmartNets58706.2023.10216267
https://www.mobiledit.com/
https://doi.org/10.4018/978-1-7998-5728-0.ch023

Advanced Research on Information Systems Security, an International Journal (ARIS2) (2025) Volume 5, No 1, pp 72-85

 85

[13] FinalMobile. “Finalmobile” Internet: http://fmf.finaldata.com/Download/fmf4.html, 2023 [Dec. 10, 2023].

[14] L. Rosselina, Y. Suryanto, T. Hermawan and F. Alief, "Framework Design for the Retrieval of Instant

Messaging in Social Media as Electronic Evidence," 2020 7th International Conference on Electrical

Engineering, Computer Sciences and Informatics (EECSI), Yogyakarta, Indonesia, 2020, pp. 209-215,

[Online]. Available: 10.23919/EECSI50503.2020.9251888.

[15] A. Dawabsheh and M. Owda, "In-Vehicles Infotainment System Forensics Case Study," 2023 International

Conference on Information Technology (ICIT), Amman, Jordan, 2023, pp. 32-37, [Online]. Available:

10.1109/ICIT58056.2023.10225982.

[16] Mateus-Coelho, N. (2021). A New Methodology for the Development of Secure and Paranoid Operating

Systems. Procedia Computer Science, 181, 1207-1215. https://doi.org/10.1016/j.procs.2021.01.318

http://fmf.finaldata.com/Download/fmf4.html
http://doi.org/10.23919/EECSI50503.2020.9251888
http://doi.org/10.1109/ICIT58056.2023.10225982
https://doi.org/10.1016/j.procs.2021.01.318

